
1 INTRODUCTION 

In a current research project we are developing a 
software tool to assist the planning of maintenance 
measures for infrastructural buildings (bridges, tun-
nels, etc). 

Traditionally this planning is done by hand. The 
planner has to consider numerous constraints. Some 
constraints, as the steadying of the budget flow, 
which will reduce the administrative effort a great 
deal, can not be considered with this approach. 

Also the impact on traffic by road closings due to 
maintenance work, whose minimization is a main 
optimization goal, can only be considered in a very 
simplified way. The actual benefit of postponing the 
maintenance at one site to avoid the parallel closure 
of two given roads can not be evaluated. 

The tool we are developing will search a schedule 
for maintenance work over the next few years that 
fulfills all given constraints and at the same time 
keeps the impact on traffic as low as possible. 

2 PROBLEM STATEMENT 

The first goal of optimizing the maintenance sche-
dule is to minimize the impact on traffic. This can be 
measured by the waiting time produced by the paral-
lel closure of a set of roads. 

In addition to this the schedule is subject to a 
number of constraints. 

The most obvious and also most important task is 
to schedule the maintenance work of one particular 
building before this building reaches a state where 
the security is no longer guaranteed, i. e. the build-
ing is likely to collapse. 

Besides this security constraint there exist various 
constraints set by the public and by monetary con-
siderations. 

For the public it is important to guarantee free 
traffic flow, that is, not to block possible detours by 
setting up a parallel work zone. Also the blocking of 
arterial roads and urban freeways should be mini-
mized by maintaining buildings on the same main 
road at the same time. 
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The monetary objective is to steady the budget 
flow over the years. Costs can also be decreased by 
adjusting the maintenance schedule with the main-
tenance work of third parties also using the building 
such as public services and public transport organi-
zations. 

Additional constraints exist which are known to 
the planner but are too complicated to be modeled in 
the planning software. So the planning tool should 
give as result a set of solutions that satisfy the given 
constraints for the planner to choose from. 

3 APPROACH 

3.1 Ant Colony Optimization 

As for the described problem there exists no algo-
rithm to find an exact solution in reasonable time it 
has to be solved approximately, e.g. by metaheuris-
tics. We are using ant colony optimization (ACO) to 
construct the schedules, as ACO has performed very 
well at similar problems (e.g. Lee 2009). 

ACO is a constructive metaheuristic developed 
by Dorigo (1992). It is based on the behavior of nat-
ural ants that are able to find the shortest way be-
tween their nest and a source of food by communi-
cating via a chemical substance called pheromone. 
Ants are depositing pheromone while walking and 
prefer routes were more pheromone is present. So 
this positive feedback guides the majority of ants to 
use only one path after some time (compare e.g. Do-
rigo & Stützle 2004; Boysen). 

The first problem on which ACO was applied 
was the Traveling Salesman Problem (TSP, Dorigo 
1992). Meanwhile ACO has been applied to many 
other problems, e.g. the bi-criteria TSP (García-
Martínez et al. 2004), the Vehicle Routing Problem 
(Barán & Schaerer 2003; Reimann et al. 2004), the 
Quadratic Assignment Problem (Stützle & Dorigo 
1999), Timetabling Problems (Socha et al. 2002), 
Construction Site Planning (Ning et al. 2010), and 
Scheduling Problems (Merkle et al. 2002; Soliman-
pur et al. 2005; Christodoulou 2010). For an over-
view see Dorigo & Stützle 2004. 

The basic design of the algorithm is shown in 
Figure 1. 

 
 

 
Figure 1. Algorithm 

 
 

3.2 Objective function 

Our goal is to minimize the impact on traffic. This 
can be described by the waiting time produced by 
establishing a set of working zones that will lead to a 
closure of some roads. 

The waiting time is measured by comparing the 
travel times in an undisturbed net at rush hour to the 
scenarios set by the maintenance schedule. For each 
schedule containing n years, n scenarios (each with a 
number of roads closed at the same time) have to be 
considered. As evaluation value we choose the high-
est waiting time produced in one of the n scenarios 
of an n-year schedule. Another possibility could be 
to minimize the sum of produced waiting time over 
all n years. 

3.3 Problem model 

To solve the maintenance scheduling problem by 
ACO we are structuring it as a graph (see Figure 2). 
To construct a schedule the ants are moving through 
the graph from left to right. The vertical layers of the 
graph represent the years. In each year the ants can 
chose from a number of buildings that have to be 
maintained, that is the rows of the graph. 

 
 



 
Figure 2. Problem structure 

 
 
To model the parallel maintenance of several 

buildings we are not using single ants as in classical 
ACO but ant teams as proposed by Lee (2009). 
Those ant teams are sets of ants that together con-
struct a schedule. The choices made by the ants of 
one team are known by all ants of this team but not 
by the ants of the other teams. E.g. if building no. 1 
has been chosen by one ant of team 1 in the first 
year, this building no longer has to be considered by 
the other ants of team 1 in year 1 nor by all ants 
from this team in the following years but it is still 
available for the ants of the other teams as well in 
year 1 and – if not chosen then – in the following 
years. 

Following Dorigo & Stützle (2004) we create as 
many ant teams as there are buildings in our prob-
lem. This helps for a good exploration of the search 
space. 

3.4 Initialization 

To ensure good performance of the algorithm the 
pheromone trails have to be initialized to a start val-
ue τ0. This prevents the ants from being influenced 
to much by the solutions found in the first iteration. 

Dorigo & Stützle (2004) propose to set τ0 = m/Cnn 
where m is the number of ants (respectively ant 
teams) and Cnn is the cost of a solution constructed 
randomly or by any other heuristic. 

3.5 Construction of a schedule 

For constructing a good schedule it is of no impor-
tance in which sequence the buildings are main-
tained. Only the year of maintenance of each build-
ing and the set of buildings chosen in each single 
year is of interest. So other than in traditional ACO 
the pheromone is not deposited on the graph’s 
arches but on the nodes. 

An ant standing in column (i-1) chooses the next 
node j in the next column i with the probability 
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where τij is the amount of pheromone on the node j 
in column i, ηij is some heuristic information on this 
node and α and β are parameters for tuning the re-
spective influence of pheromone and heuristic in-
formation. 

In traditional ACO the heuristic information ηij is 
obtained by estimating the benefit of the choice of 
the node j to the objective function. E.g. in the Trav-
eling Salesman Problem ηij is mostly chosen as the 
inverse of the costs of the arch i-j. 

In our maintenance problem we can not estimate 
the effect of a choice on the objective function as 
this is a highly complex function depending on all 
choices made for one year. I.e. the closure only of 
road A may not have a great impact on traffic flow 
but if road A is the best detour for road B the impact 
may increase enormously when there is maintenance 
done on both roads A and B at the same time. 

But we can make use of η to steer the ants away 
from infeasible solutions: To describe the condition 
of a building we are using condition indices from 1 
to 6 where 1 is the condition of a newly built build-
ing and 6 the condition of a building with a high risk 
of collapse (see also Schießl & Mayer 2006, 2007). 
This condition index can be used to set η. Buildings 
with a high condition index should be more attrac-
tive for the ants than buildings in a good condition. 
Thereby η and the amount of pheromone deposited 
at each iteration τ should be in the same dimension. 
This biases the ants in the first few iterations away 
from infeasible solutions with buildings reaching 
condition index 6 in the period under consideration 
and so violating the security constraints. 

Alternatively one could set deadlines for the lat-
est time for maintenance for all the buildings and 
construct η depending from the number of years un-
til this deadline is reached. 

A first implementation has shown that for differ-
ent objectives for τ and η the weighting β should be 
very low to ensure convergence. Convergence here 
means that after a number of iterations the majority 
of ant teams will choose the same near-optimal 
schedule. While for a TSP Dorigo & Stützle (2004) 
propose 2 ≤ β ≤ 5 in our implementation the algo-
rithm shows best convergence – and also best results 
in respect to the objective function – for β = 1. α as 
in TSP should be set to 1. 

The algorithm introduced here can either be ap-
plied to all buildings under one administration or on-
ly to buildings that are selected before because they 
are already in a bad condition. In this second case 
buildings once chosen need no longer be considered 
for the rest of the schedule construction; so it is suf-
ficient for each ant team to have a memory where all 
buildings already in the schedule are stored. The 
buildings in this memory are not longer available for 
this ant team for the rest of the schedule. 

In the case where all buildings are considered it 
may be desirable to do maintenance work on the 



same building more than once during the period un-
der consideration. Then once maintained buildings 
have to be still available for choice but their condi-
tion index respectively their maintenance deadline 
and therefore their η has been changed. This change 
in condition only exists for the one ant team that has 
scheduled the maintenance of the building, though. 
So for each team there has to be maintained its own 
η-matrix that changes during schedule construction 
and has to be reset after each iteration. 

3.6 Pheromone update 

After all ant teams have constructed full schedules, 
i.e. each ant of each team has chosen a building for 
each year of the period under consideration, the phe-
romone traces on the graph are updated. 

First some pheromone evaporates on all nodes to 
enable the algorithm to forget bad solutions. This is 
done by decreasing the amount of pheromone by a 
factor ρ with 0 < ρ ≤ 1. Following Dorigo & Stützle 
(2004) we choose ρ = 0.5. 

After this all ant teams deposit pheromone on all 
the nodes belonging to their respective schedules. 
The amount of pheromone Δτij

k deposited by each 
team k is computed as the inverse square of the 
highest waiting time produced over the period under 
consideration in the respective schedule for each 
node ij that belongs to this schedule. It is 0 for all 
nodes that are not part of the schedule k. Also ant 
teams that constructed infeasible solutions, e.g. solu-
tions that violate the security or the budget con-
straints, are allowed to deposit pheromone to prevent 
premature convergence and to exploit the informa-
tion contained in those solutions. 

To avoid convergence to such infeasible solutions 
we are using the Elitist Ant (EA) approach (see also 
Dorigo & Stützle 2004). In the so called elitist ant 
the best solution found so far is stored. As long as no 
better solution is found this elitist ant in each itera-
tion deposits pheromone even if its solution is not 
part of the set of solutions found in this iteration. 
The influence of this elitist ant can be weighted by a 
factor e. So the overall pheromone update is com-
puted as follows: 
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Dorigo & Stützle propose e to be the same as the 
number of nodes (buildings). As we have teams of 
ants, e better is chosen same as the number of ant 
teams. 

Originally EA has been developed to guide the 
ants away from the greedy solutions, i.e. the solu-
tions with to high influence of the heuristic informa-
tion η, of the first few iterations. As in our approach 
η and τ describe different optimization goals the 
danger of such greedy solutions is not given. By not 
allowing infeasible solutions to become the solution 

of the elitist ant the EA approach is a useful tool to 
get rid of those solutions while still exploiting possi-
ble useful information contained in them. 

3.7 Next iteration and termination 

After the pheromone update the next iteration step 
starts. The memories of the ant teams respectively 
the changes to the η-matrix are reset. The construc-
tion of the schedules now orients on the new values 
of the pheromone trails. 

The algorithm terminates when over a given 
number of iterations the iteration-best solution does 
not change. 

4 EXPERIMENTAL RESULTS 

The algorithm described before has been imple-
mented for a simplified model of the problem to test 
its performance. 

On the one hand simplifications have been made 
in the deterioration function: For each building was 
set the same deterioration function where the condi-
tion index is only dependent on the age of the build-
ing. Maintenance on a building resets its condition 
index to 1. 

Further there is no coupling with a traffic simula-
tor, yet. To model the impact on traffic to each 
building fictitious values of “waiting time” produced 
by a work zone at this building were assigned. The 
“waiting time” per building is set to a value between 
100,000 and 400,000 units. At a parallel mainten-
ance of some buildings their respective “waiting 
time” values are summed up linearly. This of course 
is far from reality but works well as a simple surro-
gate model. 

For the first test only security and budget con-
straints were considered. Schedules not fulfilling 
those constraints are set infeasible. 

The test case is a set of 100 buildings with ran-
domly assigned ages. Per year 5 buildings can be 
maintained, so the worst possible schedule produces 
a highest waiting time of 2,000,000 units. The period 
under consideration is 5 years. Without maintenance 
after the five years 3 buildings reach condition index 
6 (i.e. are likely to collapse). 

First tests show that the algorithm converges very 
fast – in about 20 iterations – to a feasible solution. 
The solutions found produce a highest waiting time 
of 900,000 to 1,000,000 units. This is far better than 
a randomly constructed schedule that produces in 
average a highest waiting time of 1,500,000 units. 

5 CONCLUSIONS 

Maintenance scheduling is an optimization problem 
subject to many constraints. With the algorithm 



shown in this paper near optimal solutions can be 
found. 

The algorithm is based on Ant Colony Optimiza-
tion. Modifications have been made to model paral-
lel maintenance work and to guide the search in the 
first iteration step without knowing the benefit of 
certain choices to the objective function. 

A first implementation could show that the algo-
rithm is able to find good solutions. 

A next step will be the coupling with a traffic si-
mulator to get realistic values for the produced wait-
ing time. 

Future studies could further improve the perfor-
mance of the algorithm by testing different settings 
of the ACO-parameters α, β and ρ. Further adapta-
tions, should make the algorithm fit even better to 
the needs of building managers. 
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