
   
 

Abstract 

In the past this research efforts in optimizing earthwork processes focused mainly on minimizing 
transportation costs and mass haul distances, respectively. This kind of optimization problem, well 
known as earthwork allocation problem can be solved by applying linear programming techniques. 
As a result, the most cost-efficient cut-to-fill assignments will be found. In this article, starting from 
an optimal cut-to-fill assignment, we formulate a new corresponding combinatorial optimization 
problem. This earthwork section division problem arises when a large road project is divided into 
several linear construction sections and tendered to different normally non-cooperating construction 
companies. The optimization objective is to partition the optimized cut-to-fill-assignments in different 
earthwork sections with minimal earth movements between them. This problem is subjected to certain 
user-defined constraints, like number of sections, minimal and maximal section-length, etc. The 
proposed solution model will be integrated into an earthwork modeling and assessment system which 
allows performing a quantity take-off from a roadway model to provide the necessary input data for 
the optimization algorithms. 

Keywords: earthwork optimization, linear programming, road construction, mathematical modeling. 

1 Introduction 
Earthwork is the major working task in road construction projects and characterized by large 

quantities of earth material which have to be excavated, transported, and filled, possibly over a long 
distance. Therefore, linear programming (LP) techniques have been applied in order to minimize the 
transportation costs and the mass haul distances in the earthwork processes, respectively. The first LP-
model of this earthwork allocation problem has been formulated and developed by Stark and Mayer 
(1983), further studies and extensions of this model have been done by Easa (1987 and 1988), 
Jayawardane (1990) and Son (2005).  As a result, the LP solution provides the optimal cut-fill-
assignments and determines the corresponding amount of earth to be hauled. 

Nowadays, large road construction projects, such as highway projects, will usually be tendered to 
different constructors or to sub-constructors by a general constructor. The divided sub-projects can be 
processed in parallel in order to reduce the overall project duration. Normally, it is difficult to 
establish some kind of cooperation between these constructors. Consequently, if the division of 
earthwork sections is not optimal, it may happen that one or more construction sections suffer from 
considerable overflow of earth materials while the other sections demand additional materials from 
external borrow pits. Although the material flows can be balanced during the construction phase with 
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a lot of coordination efforts, this will usually result in additional costs for the remitter. Accordingly, it 
is advantageous to solve the earthwork section division problem at a very early stage in order to 
support the tender or general constructor to make an optimal decision.   

The optimization results of these two optimization problems can be integrated in existing 
computer-aided earthwork systems which have been developed in previous research efforts. This 
includes earthwork control systems (Askew et al., 2002, Kim et al., 2003), earthwork modeling and 
simulation systems (Chahrour 2007, Ji et al., 2009) and 4D virtual road construction frameworks 
(Söderström and Olofsson, 2007). 

2 Earthwork allocation problem 
In road construction projects, cut and fill areas are traditionally defined by intersecting the road 

level with the terrain level vertically (Figure 1a). The quantities of cut and fill areas can be calculated 
using numerical methods, depending on the national regulation in civil engineering, such as the Gauß-
Elling-method applied in Germany (REB 1979). The mass haul distance can be defined as Euclidean 
distance between the centre points of cut and fill areas. 

Figure 1. (a) Example of cut and fill areas in road construction project; (b) corresponding bipartite directed 
graph. 

To formulate the optimization problem, we define G = (P, E) to denote a bipartite graph which 
contains of a vertex set P and the edge set E. The set of vertices P is partitioned into two disjoint 
subsets U and V of P. The set U consists of those vertices corresponding to cut areas and, analogously, 
the set V represents vertices corresponding to fill areas. For each vertex Pi , the parameter iX  
denotes the amount of material to be sent (if Ui ) or to be filled (if Vi ). We may assume that the 
total amount to be sent equals the total amount to be filled by introducing dump sites and borrow pits: 
A dump site is used to dump earth material due to material overflow. A borrow pit provides filling 
materials which have been bought in addition. A directed edge ije  is introduced for each pair of 
vertices (i,j) where i is a vertex corresponding to a cut area and j is a vertex corresponding to a fill 
area. Each of these edges mirrors the possibility of sending material from a cut area to a fill area. 
Additionally, each edge ije has an associated cost ijc  which represents the cost of transporting one 
mass unit of material from i to j. 

 A decision variable ijx  is assigned to each of the directed edges in the set E. It denotes the 
quantities of earth to be hauled from cut i to fill j following the edge direction (Figure 1b). We can 
model the earthwork allocation problem as a linear programming problem (cf. Figure 2). We assume 
that the (known) transportation cost along each edge (i,j) is non-negative, i.e., 0ijc . The objective 
function (1) is to minimize the total transportation cost. Due to the fact that in the real world only 
positive material flows make sense, the decision variables ijx  are restricted to be non-negative (see 
Constraint (4)). Constraint (2) implies that the total quantity of material to be hauled from some cut 
area i  to all fill areas equals the total quantity of material iX  provided by cut i . Constraint (3) is 
similar to (2) for the requirements in j. 



   
 

Figure 2. Mathematical formulation of earthwork allocation problem. 

This formulation is a simplified minimal cost flow problem and can be solved efficiently using 
network flow algorithms (see Ahuja, 1993). Having solved the optimization model above, the amount 
of earth ijx  to be moved from a cut area i to a fill area j, such that the overall transportation cost is 
minimal, is known (Figure 1b). A real-world example will be presented in Section 4. 

3 Earthwork section division problem 
The earthwork section division problem emerges when a large road construction project is divided 

into several separate earthwork sections. The objective of this optimization problem is to obtain a 
reasonable division of the project such that in each earthwork section the quantities of excavated 
material and filling material are preferably balanced in order to avoid interactions between the 
sections. As mentioned before, we propose a two-step optimization algorithm for this problem. At 
first we solve the earthwork allocation problem in order to find a minimal cost cut-to-fill assignment. 
In the second step we identify the section division having the least necessary overall earth movement 
between different earthwork sections among all section divisions meeting the demands (such as 
desired number of earth sections or maximal length of a section).  

Figure 3. (a) Example of a feasible section division with three resulting earthwork sections 
 231211 ,, vpupvpA  ,  363524 ,, upvpupB  and  594847 ,, vpupvpC  . 

(b) Cut-to-fill assignment matrix ijijx )( obtained from solving the earthwork allocation problem optimally. 

In order to be able to formulate this problem, we consider the set VUP  together with the 
index set  nI ,,1 , representing the possible positions for a section division, i.e., the cut and fill 
areas ordered according to their actual appearance along the construction project. Hence, an earthwork 
section ES from position ip  to position jp  consists of all cuts and fills located in between: 

 jkiPpES k  : . The required material flow between position ip  and position jp  is exactly 
the value klx  obtained from the earthwork allocation problem, given that ki up   is a cut and lj vp   
is a fill, and zero otherwise. An example of a section division is illustrated in Figure 3. 



   
 

The earthwork section division problem can be formulated as to find a feasible division of the 
project into earthwork sections, such that the total material flow between different sections is minimal. 
This combinatorial optimization problem can be expressed by a binary linear program (BP) with 
decision variables ijb , representing the earthwork sections, which are interpreted as follows: 






else ,0

position at  ends and position at  beginssection earthwork an  if ,1 ji
bij  

Obviously, not all possible combinations of those variables correspond to a feasible earthwork 
section division, e.g. it is not allowed to have gaps between the sections, and different sections must 
not overlap. Therefore, we need a number of constraints making sure that we obtain a solution which 
fulfils our requirements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Mathematical formulation of earthwork section division problem. 

In the following we want to deduce the constraints appearing in our BP formulation (in Figure 4). 
As mentioned before, we do not want earthwork sections to overlap. In particular this means that at 
each position ip , ni ,,1 , at most one section can begin or end, which is expressed by inequalities 
(2) and (3). The special cases to consider, namely the first and last position, where an earthwork 
section has to begin and end, respectively, are captured in constraint (4) and (5). Since we want to 
cover the whole road project with our section division, it is necessary that a new section begins right 
after a section ends. Conversely, no section can start at position 1ip  without the preceding section 



   
 

ending at position ip , if we disallow gaps. These properties are guaranteed by condition (6) in our 
program, since by (2) and (3) both of the sums in (6) can only admit the values zero or one. Observe 
that these constraints also prevent overlapping sections. Hence, the aforementioned (in-)equalities 
along with the variable definition (12) are sufficient to describe the feasible section divisions. 

Nevertheless, it may be useful to add several other constraints in order to avoid trivial solutions, 
such as the section division only consisting of one section. The addition of (7) and (8) with user 
defined integers maxA  and minA filters out all section divisions in which the number of resulting 
earthwork sections exceeds maxA  or is below minA . Let ijd  denote the actual distance between 
positions ip  and jp . Then in a similar manner constraints (9) and (10) ensure that each earthwork 
section has a minimal length of minD  and a maximal length of maxD , where minD  and maxD  are user 
defined values. Optionally, the addition of condition (11) makes sure that all earthwork sections 
include more than just a single cut or fill area. As stated before, the objective of our optimization 
problem is to find a section division with minimal intersectional earth movement. Therefore it is 
straightforward idea to define the objective function value for a feasible division by simply summing 
up all material flows between different earthwork sections. However, the material flow between two 
non-adjacent sections also influences all intermediate sections and therefore should be especially 
punished. 

 

 

 

 

 

 

 

 

 

Figure 5. Cut-to-fill assignment matrix ijijx )( obtained from the earthwork allocation problem and 

matrix ijijb )( represent the earthwork section divisions. (a) Solution with three earthwork 

sections  211 , ppES  ,  65432 ,,, ppppES   and  9873 ,, pppES  , represented 
by 1793612  bbb , with objective value 353412 xxx  ; (b) solution 1593412  bbb  with 
corresponding sections  211 , ppES  ,  432 , ppES   and  987653 ,,,, pppppES  , having the better 
objective value 12x .  

 In our objective function (1), for each earthwork section in the division ( 1ijb ) we add the 
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doing so, we also count the material to be transported beyond the ending position of a section, if 



   
 

existent, since in a feasible division another section has to begin in the subsequent position. 
Consequently, a material flow klx   is counted each time it crosses the border of a section. An example 

for feasible earthwork section divisions with different objective value is presented in Figure 5.  

4 Real-world example 
A large federal highway construction project has been planned to be constructed in Germany in the 

next year. The linear construction site which consists of 41 cut and fill areas is about 20 kilometers 
long. As we can see in the following figure, the cut and fill areas are distributed along the entire 
project construction site. 

Figure 6. Part of vertical alignment of the road construction project. 

The list of earthwork quantities corresponding to the cut and fill areas in Figure 6 are presented in 
Table 1 of Figure 7, as well as the optimal cut-to-fill assignments resulted from solving earthwork 
allocation problem. 

Figure 7.Part of earthwork quantities and result of earthwork allocation problem. 

The large road project will be tendered to 3 different construction companies, and each 
construction section must have a length of 4 kilometers, at least. This earthwork section division 
problem can be formulated and solved using the binary linear program provided in this paper. In 
Figure 8, the optimal earthwork section division regarding user given parameters is illustrated. 

Figure 8. Optimal earthwork section divisions: 3 earthwork section, each section at least 4 kilometers long. 

With the integration of the powerful open-source linear and mix-integer programming solver 
(GLKP v.4.3, 2009) into the earthwork assessment system ForBAU Integrator (Ji et al., 2009), the 
solutions of the two optimization problems can be found in acceptable running time, e.g. for dividing 
41 earthwork areas, the solver computes the optimal solution within 3 seconds on a common machine.  



   
 

5 Conclusion and future research 
This paper introduces two major problems arising in optimizing earthwork processes: finding the 

most cost-efficient cut-to-fill-assignments (earthwork allocation problem) and dividing a large 
earthwork project into sections with minimal inter-sectional material flows (earthwork section 
division problem). This paper also presents the mathematical formulation and solution model of these 
two problems using (binary) linear programming technique. The introduced models and their 
solutions are applied in a real-world construction project, a highway construction site in Germany, to 
enhance the productivity in construction project.  

In future research, we aim at solving two further optimization problems focusing on minimizing 
earth transport equipments and the project duration:  

 With a given number of transporters, what is the minimal earthwork duration? 
 To the given earthwork duration, what is the minimal number of transporters required to execute all 

transportation within the prescribed duration? 
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