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Abstract. User requirements, building codes, construction rules and regulations imply constraints 
on a building design. Additional constraints are introduced by the different participants of the 
collaborative planning process through the individual body of knowledge representing their 
particular domain. Checking digital building models for compliance with these constraints allows 
detecting design errors and conflicts in an early stage. To realize this, all constraints have to be 
represented in a computer-processable form. However, many regulations and codes make use of 
higher spatial concepts, such as “must contain”, “must be above”. Today, such constraints can only 
be implemented by software experts using advanced geometry algorithms. In order to facilitate the 
definition of spatial constraints for common users, the paper introduces the concept of providing 
predefined metric, directional and topological operators as ready-made building blocks. The paper 
discusses in detail a proposed extension of the IFC constraint framework to include these spatial 
operators and describes procedures for embedding spatial constraint checks in the collaborative 
planning process. 

1   Introduction  
In most cases, products are made for fulfilling requirements. Buildings, for example, are 
erected for providing living, office or recreational space. At the same time, there are lots of 
other conditions that have to be satisfied by the product being designed and engineered, 
among them physical, economical, esthetical, and legal conditions. These requirements form 
constraints for the design and engineering process. 

In collaborative design processes, such as the planning of buildings, the individual parti-
cipants of the diverse domains involved typically have those constraints in mind which 
represent the body of knowledge of their particular design or engineering domain. A project’s 
structural engineer, for example, may demand a certain slab thickness while at the same time 
the architect requires a minimum clear height in the building’s rooms. 

Formalizing such constraints in a way they become interpretable by computers allows to  
• detect constraint violation and 
• detect conflicts between contradictory constraints  

during the design phase, improving the design coordination and thus helping to reduce costs 
and prevent time delays. 

A necessary precondition for processing constraints is a computer interpretable representation 
of the product being designed. In the case of AEC design processes, building product models, 
also known as building information models (BIM), form such a suitable representation. These 
models capture not only the three-dimensional geometry of the building, but also the seman-
tics of the individual elements by applying object-oriented modelling concepts (Eastman et 
al., 2008). The most mature and wide-spread standardized building product model is called 
Industry Foundation Classes (IFC)1, developed and maintained by the buildingSmart 
consortium2. Combining digital building models with a formalized rule basis representing 
                                                 
1 http://www.iai-tech.org/products/ifc_specification 
2 http://www. buildingsmart.com 
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requirements or building codes opens the way for an automated check of compliance of a 
building design. However, the major challenge lies in the process of formalizing these codes 
and requirements. 

From an information processing point of view, current building codes and regulations are 
written in a rather informal way, using semi-legalistic jargon. This is due to the fact that these 
documents are meant to be interpreted by humans and not by machines. Though such 
informal specifications are often ambiguous, inconsistent and contradictory, humans are able 
to follow them, thanks to their experience, context-awareness, and “improvisations” capabi-
lities. However, a direct implementation of the original regulation texts in a form processable 
by computers is, in most cases, impossible. Instead, a laborious manual translation is required 
which involves a lot of interpretation. This process has been realized in many different code 
checking projects (Liebich et al., 2002; Ding et al., 2006, Eastman, 2009).  

Due to the inherent spatial nature of the subject, many clauses in building regulations imply 
constraints with spatial semantics. A typical example is a clause in the German Landesbau-
ordnungen that requires a heat and smoke vent to be located directly above the exit staircase. 

Today, such requirements can be included in a rule base only by experts with advanced 
knowledge on the geometry representation in building models and access to advanced geo-
metry processing systems. To facilitate the translation process, accelerate it, and open it also 
to semi-experts, the authors propose to provide an intermediate level of abstraction by the 
introduction of spatial constraint operators. They allow users to formulate spatial constraints 
by means of predefined building blocks - detailed knowledge of the corresponding checking 
algorithm is not required. This paper presents formal definitions of the spatial operators, a 
possibility to integrate them with the IFC building model and gives an outlook on the imple-
mentation of the spatial constraint checker engine. 

2   Related work 
A very important field of research related to formalizing constraints is Automated Code 
Checking. The vision is to encode regulations and building design codes in a computer-
interpretable way such that the digital building can be checked against these rules (Han et al., 
1997). The International Code Council (ICC) has started to work intensively in this direction 
and has created the SmartCodes initiative3. It recommends a standard procedure, where first 
the regulation text is marked-up with extra text, and from this a logical statement is 
automatically derived, which is then represented by IfcConstraints (Nisbet et al., 2009). 

Ding et al. have implemented the Australian disabled access code on the basis of IFC models 
and the EDM Model Server (Ding et al, 2006). In their approach, first a simplified model is 
created from the IFC model by applying an EXPRESS-X mapping (ISO, 2005). In a second 
step, building codes are encoded into object-based rules using the EXPRESS-based (ISO, 
2004) rule schema provided by the EDM Model Server.  

The commercial software Solibri Model Checker is a ‘design-spell-check tool’ that allows to 
check an IFC building model against pre-defined rules. Among the large set of predefined 
rules available are also constraints with spatial semantics, such as “Beam must touch slab 
surface above”, “All load bearing components must be supported by load bearing 
components.” 

However, Ding et al. (2006) state that “Solibri Model Checker is restricted in its application 
to code compliance checking due to a restricted range of objects and parameters for encoding 

                                                 
3 http://www.iccsafe.org/SMARTcodes/index.html 
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building codes and domain knowledge”. Solibri Inc. provides the integration of user-specific 
rules as a consultancy service, as realized, for example, in case of the implementation of the 
GSA accessibility framework (Eastman, 2009). However, the extension of the rule base 
directly by users is not intended. 

In (Kim & Grobler, 2009) an ontology-based approach for representing requirements and 
constraints of a project is presented. The authors propose to employ an ontology reason 
mechanism to detect conflicts between diverging participants’ requirements in collaborative 
design scenarios. Unfortunately, the paper discusses only very basic quantitative constraints, 
such as limits on a slab’s thickness.  

In (Borrmann, 2004) a declarative constraint definition language for digital building models 
with dynamic data models has been presented. However, the presented language allows only 
the specification of simple constraints based on attribute values and relations and does not 
provide support for spatial constraints. 

The necessity for formalizing client requirements has been extensively discussed by 
Kiviniemi (2005). He has developed a requirements model specification which can be linked 
to a building-product-model-based design model of the project. 

3   Spatial constraints 
Spatial constraints form an important intermediate level of abstraction, between the 
quantitative properties of building geometry (vertex coordinates etc.) as encoded in the 
building information model and the way humans reason about building and the relations 
between their components (Figure 1). 

 

 
Figure 1: Spatial constraints form an intermediate layer of abstraction 

Many construction codes and regulations make use of spatial constraints, e.g. “There must be 
insulation below the ground slab.”, “A heat and smoke vent has to be located directly above 
the exit staircase.” etc. 

We distinguish three different types of spatial constraints: 
• distance constraints 
• directional constraints 
• topological constraints 

Distance constraints rely on the Euclidean metric and specify the maximum or minimum 
distance between two building elements. The spatial operators available for defining metric 
constraints are distance, closerThan, fartherThan, and maxDist. They have been formally 
defined in (Borrmann et al., 2009).   

Directional constraints may be used to restrict the directional relationship between two 
building elements. As underlying directional predicates we provide above, below, northOf, 
southOf, eastOf, westOf. Since in human communication, the assignment of a directional 
predicate relies on the assumptions and the context the users have in mind, the semantics of 
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the predicates have been defined within two different directional frameworks, the projection-
based and halfspace-based model (Borrmann & Rank, 2009). The models differ in the way 
they form individual space partitions to which to one of the directional predicates is assigned. 
Beyond that, there are two different flavours of the directional operators: The strict version 
requires the entire target object to be located within the respective space partition, in case of 
the relaxed version a part of the target object suffices. 

Topological constraints restrict the topological relationship between two building elements, 
i.e. those relationships which are invariant under affine transformations, such as translation, 
rotation and scaling as well as any combination of them. For the mutual exclusive topological 
predicates touch, contain, within, overlap, equal and disjoint formal specifications on the 
basis of the 9-intersection model have been given in (Borrmann & Rank, 2008). 

4   Consistency and requirement constraints  
In general, we distinguish two fundamentally different types of constraints: Consistency 
constraints and Requirement constraints. Consistency constraints result from spatial 
(geometric or topological) references in the BIM data model. A typical example is the 
containment relationship, which is modelled in IFC by the IfcRelContainedInSpatialStructure 
objectified relationship. In general, the data model allows setting this relationship also for 
elements that are not contained within each other. This may result in inconsistencies between 
the geometric and the semantic representation with severe consequences for applications 
relying on these spatial relationships. By applying the spatial constraint checking techniques 
presented here, these kinds of inconsistencies can be detected and fixed. Other relationships 
of the IFC data model with spatial semantics are IfcRelConnectsElements, IfcRelCoversBldg-
Elements, IfcRelCoversSpaces, IfcRelFillsElement, IfcRelVoidsElement and IfcRelSpaceBoun-
dary, for example. 

Consistency constraints are generic, i.e. not project-specific. Requirements constraints, on the 
other hand, represent building codes, regulations, best-practise construction rules, or client 
requirements, which may vary from project to project. A typical example for a requirement 
constraint with spatial semantics would be “the kitchen in the second storey must be directly 
above the kitchen in the first storey”. 

5   Constraint checking in collaborative design process 

The proposed concepts are based on the assumption that a central model repository such as an 
IFC model server is used for central model maintenance and design coordination. Basically 
we distinguish two different modes of maintaining constraints in conjunction with a building 
information model. In the first mode, the constraints are stored as part of the building model, 
using for example IfcConstraint objects. This allows detecting conflicts during the work on a 
local copy of the building model provided that there is constraint checking engine available. 
In the second mode, the constraints are stored in a separate rule base which is located at the 
central information repository. In this case, constraints are only validated when the building 
model is checked-in at the central repository. The third option is a hybrid mode, where 
constraints are stored in the BIM but validated only during the check-in procedure. 

Whenever a constraint violation occurs, it has to be resolved manually. Either by modifying 
the BIM in a way it complies with the defined constraints, or by removing the violated con-
straints. If the violated constraint has been defined by another participant, the design conflict 
has to be resolved through classical negotiation techniques supported by communication via 
phone or email. 
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A typical example scenario where a constraint with spatial semantics is used in a collaborative 
design process would look as follows: First an HVAC engineer places a water line at the top 
side of a certain room. Later, the interior architect inserts a suspended ceiling below the water 
line and, at the same time, sets the constraint “ceiling below water line”. When even later, the 
HVAC engineer again modifies the position of the water line such that it becomes located 
below the ceiling, a constraint violation is detected and communicated to the HVAC engineer. 

Besides constraint violation, also contradictions between constraints which are defined by 
different participants have to be detected. Let’s assume, in an abstract example scenario, three 
different participants: The first one sets a constraints that demands “object A above object B”, 
the second one “B above C” and the third one “C above A”. As soon as the third constraint is 
entered into the rule base, the constraint checking engine has to detect the contradiction and 
inform the user accordingly. 

Besides requirement constraints defined by the users, also consistency constraints have to be 
checked each time a BIM model is checked-in at the central repository. This is equivalent to a 
successful compilation of program code which is required in collaborative software develop-
ment projects before a new version can be checked-in at the code repository. In that case, the 
compiler acts as a consistency check engine. 

6   Constraint representation in IFC 
With release 2.0, the Industry Foundation Classes started to provide support for capturing 
constraints in digital building models. Currently, in IFC2x3 release, the IfcConstraint-
Resource schema has been integrated, providing the entities IfcConstraint, IfcMetric and 
IfcObjective which can be associated with objects deriving from IfcRoot, including IfcControl 
(Figure 2). 

In the IFC model, constraints may be either qualitative (represented by an IfcObjective) or 
quantitative (represented by IfcMetric). A qualifier can be applied to an objective constraint 
that determines the purpose for which it is applied (CodeCompliance, DesignIntent, Health-
AndSafety, Requirement, Specification, and TriggerCondition). An IfcObjective is applied to 
define the constraining values beyond which building codes may be violated or to limit the 
selectable range of values as in a specification (e.g. value of d must be greater than a but less 
than b). A set of benchmark values can be specified for the objective constraint and a set of 
result values captured for performance comparison purposes. An IfcMetric defines the actual 
value or values of a constraint. Values can be defined in terms of a benchmark requirement 
which sets the intent of the constraint i.e. whether the benchmark is greater than (>), less than 
(<) etc.  

The type of constraint may be hard, soft, advisory, or undefined. The entity IfcConstraint-
AggregationRelationship allows for concatenating individual constraints by applying the 
logical operators AND or OR resulting in an aggregated IfcConstraint object. IfcConstraint 
objects can be associated with any subtype of IfcObjectDefinition (derived from IfcRoot) 
through the IfcRelAssociatesConstraint relationship; constraints can thus be applied directly 
to objects like building elements, or via controls assigned to objects. The IfcControlExtension 
schema provides basic entities (subtypes of IfcControl), that control or constrain products or 
processes in general, e.g. space programs or time schedules. 

A second mode of defining constraints in IFC is the association of constraints with properties 
by means of the IfcPropertyConstraintRelatinship. This allows setting constraints to values 
that are defined within property sets. This mode is not discussed in detail here. 
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Figure 2: Class diagram in UML notation of the current entities constituting the IFC constraint 
resources and the proposed extension by spatial constraints (depicted in yellow). 

 

Figure 3: Proposed extension of IFC by entities representing spatial constraints 

The IfcConstraint model has been employed in the smartCodes project for encoding access 
and egress requirements (Nisbet et al., 2009). In a similar context, other researchers preferred 
to derive a simplified model from the IFC representation where e.g. a wall’s thickness is 
accessible by an explicit attribute. In this case, the constraints have been defined as external 
rules acting on the simplified model. 

7   Integration of spatial constraints with IFC  

For integrating spatial constraints with IFC we propose an extension of the existing frame-
work. Figures 2 and 3 depict the proposed extensions.  

We propose IfcSpatialControl (subtype of IfcControl) as abstract supertype for semantic 
spatial control objects in the model, with subtypes IfcDirectionalControl, IfcTopological-
Control, and also IfcProximityControl (introduced in IFC2x4 alpha as subtype of IfcControl) 
to capture the nature of the control and potentially the actual status of it (distance, direction or 
topology); the actual status is optional information and when known can be asserted against 
any associated requirements (constraints).  
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The requirements would be associated to spatial control by IfcRelAssociatesConstraint, with 
IfcObjective or its proposed new subtypes: IfcDirectionalObjective or IfcTopologicalObjec-
tive (distance objective is represented by IfcObjective, and distance value in IfcMetric). 

For defining directional constraints, the entity IfcDirectionalObjective has been introduced. It 
provides the attributes DirectionalOperator, DirectionalModel, and ModelStrictness which 
allow encoding the required parameters described in Section 3. To restrict possible values of 
these attributes the enumerations IfcDirectionalOperatorEnum, IfcDirectionalModelEnum, 
IfcDirectionalModelStrictnessEnum have been introduced. 

Topological constraints are defined by means of the entity IfcTopologicalObjective, which 
allows to choose between six different topological conditions provided by the enumeration 
IfcTopologicalOperatorEnum.  

The proposed IfcRelAssignsToSpatialControl entity allows associating two IfcProduct or Ifc-
TypeProduct objects (‘relating’ and ‘related’) with IfcSpatialControl. These objects are sub-
sequently interpreted as operator A and B, respectively, according to the definitions of the 
directional and topological operators. Figure 4 shows an example object network representing 
the constraint “Wall A shall touch Column B“.  

Applying the IfcConstraintAggregationRelationship described in Section 6 enables to com-
bine e.g. distance and direction constraints, which helps to describe constraints as e.g. “more 
than 1 meter above”. 

 

 
Figure 4: Instance diagram representing the constraint “Wall A shall touch Column B” 

8   Alternative approach: Function-based representation of spatial operators 

Integrating spatial constraints in the IFC building model is one possible solution. An 
alternative approach is to separate the (spatial) constraints from the building model and 
maintain them independently in a constraint management system. In (Kim et al., 2006), this 
approach has been implemented for non-spatial constraints using the rule schema func-
tionality of the EDM Model Server. In this case, the integration of spatial constraints can be 
realized by providing a callable function for each of the individual spatial operators. These 
functions can then be used as building blocks in constraint or rule definitions. 

The advantage of this approach is a higher degree of flexibility. For example, spatial operators 
can also be used as selectors, e.g. to identify all walls touching a certain slab and then apply 
certain constraints on them. One of the disadvantages is that spatial constraints are not part of 
the (standardized) building model and are thus not exchanged – a constraint check by the 
participant’s application is made impossible. Closely related to this is the loss of system 
independency. 
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9   Spatial constraint checking engine 
In the proposed concept, the checking of spatial constraints is realized by a spatial constraint 
checking engine. The engine requires access to an explicit 3D model of the building including 
all its elements. The actual checking is realized by means of geometric-topological algorithms 
that have been presented in (Borrmann & Rank 2008), (Borrmann et al. 2009) and (Borrmann 
& Rank 2009). Future publications will discuss the implementation in detail. 

Conclusion  
The paper has presented concepts for enabling spatial constraint checking for building 
models. Providing spatial operators as building blocks for constraint specification facilitates 
the capturing and formalization of building codes, requirements, and design intents. In the 
context of collaborative work, regular constraint checking procedures help to detect conflicts 
between competing design decisions in an early stage. As one approach for combining spatial 
constraints with building information models, the paper has presented a proposal for 
integrating spatial constraint with the IFC model. This will offer the possibility to not only 
exchange ‘hard’ data between the participants of a planning team, but also requirements and 
design intents. 
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