
1

Spatial constraints in collaborative design processes

A. Borrmann1, J. Hyvärinen2, E. Rank1
1Computation in Engineering, Technische Universität München, Germany

2Building Informatics, VTT – Technical Research Centre of Finnland
borrmann@bv.tum.de

Abstract. User requirements, building codes, construction rules and regulations imply constraints
on a building design. Additional constraints are introduced by the different participants of the
collaborative planning process through the individual body of knowledge representing their
particular domain. Checking digital building models for compliance with these constraints allows
detecting design errors and conflicts in an early stage. To realize this, all constraints have to be
represented in a computer-processable form. However, many regulations and codes make use of
higher spatial concepts, such as “must contain”, “must be above”. Today, such constraints can only
be implemented by software experts using advanced geometry algorithms. In order to facilitate the
definition of spatial constraints for common users, the paper introduces the concept of providing
predefined metric, directional and topological operators as ready-made building blocks. The paper
discusses in detail a proposed extension of the IFC constraint framework to include these spatial
operators and describes procedures for embedding spatial constraint checks in the collaborative
planning process.

1 Introduction
In most cases, products are made for fulfilling requirements. Buildings, for example, are
erected for providing living, office or recreational space. At the same time, there are lots of
other conditions that have to be satisfied by the product being designed and engineered,
among them physical, economical, esthetical, and legal conditions. These requirements form
constraints for the design and engineering process.

In collaborative design processes, such as the planning of buildings, the individual parti-
cipants of the diverse domains involved typically have those constraints in mind which
represent the body of knowledge of their particular design or engineering domain. A project’s
structural engineer, for example, may demand a certain slab thickness while at the same time
the architect requires a minimum clear height in the building’s rooms.

Formalizing such constraints in a way they become interpretable by computers allows to
• detect constraint violation and
• detect conflicts between contradictory constraints

during the design phase, improving the design coordination and thus helping to reduce costs
and prevent time delays.

A necessary precondition for processing constraints is a computer interpretable representation
of the product being designed. In the case of AEC design processes, building product models,
also known as building information models (BIM), form such a suitable representation. These
models capture not only the three-dimensional geometry of the building, but also the seman-
tics of the individual elements by applying object-oriented modelling concepts (Eastman et
al., 2008). The most mature and wide-spread standardized building product model is called
Industry Foundation Classes (IFC)1, developed and maintained by the buildingSmart
consortium2. Combining digital building models with a formalized rule basis representing

1 http://www.iai-tech.org/products/ifc_specification
2 http://www. buildingsmart.com

2

requirements or building codes opens the way for an automated check of compliance of a
building design. However, the major challenge lies in the process of formalizing these codes
and requirements.

From an information processing point of view, current building codes and regulations are
written in a rather informal way, using semi-legalistic jargon. This is due to the fact that these
documents are meant to be interpreted by humans and not by machines. Though such
informal specifications are often ambiguous, inconsistent and contradictory, humans are able
to follow them, thanks to their experience, context-awareness, and “improvisations” capabi-
lities. However, a direct implementation of the original regulation texts in a form processable
by computers is, in most cases, impossible. Instead, a laborious manual translation is required
which involves a lot of interpretation. This process has been realized in many different code
checking projects (Liebich et al., 2002; Ding et al., 2006, Eastman, 2009).

Due to the inherent spatial nature of the subject, many clauses in building regulations imply
constraints with spatial semantics. A typical example is a clause in the German Landesbau-
ordnungen that requires a heat and smoke vent to be located directly above the exit staircase.

Today, such requirements can be included in a rule base only by experts with advanced
knowledge on the geometry representation in building models and access to advanced geo-
metry processing systems. To facilitate the translation process, accelerate it, and open it also
to semi-experts, the authors propose to provide an intermediate level of abstraction by the
introduction of spatial constraint operators. They allow users to formulate spatial constraints
by means of predefined building blocks - detailed knowledge of the corresponding checking
algorithm is not required. This paper presents formal definitions of the spatial operators, a
possibility to integrate them with the IFC building model and gives an outlook on the imple-
mentation of the spatial constraint checker engine.

2 Related work
A very important field of research related to formalizing constraints is Automated Code
Checking. The vision is to encode regulations and building design codes in a computer-
interpretable way such that the digital building can be checked against these rules (Han et al.,
1997). The International Code Council (ICC) has started to work intensively in this direction
and has created the SmartCodes initiative3. It recommends a standard procedure, where first
the regulation text is marked-up with extra text, and from this a logical statement is
automatically derived, which is then represented by IfcConstraints (Nisbet et al., 2009).

Ding et al. have implemented the Australian disabled access code on the basis of IFC models
and the EDM Model Server (Ding et al, 2006). In their approach, first a simplified model is
created from the IFC model by applying an EXPRESS-X mapping (ISO, 2005). In a second
step, building codes are encoded into object-based rules using the EXPRESS-based (ISO,
2004) rule schema provided by the EDM Model Server.

The commercial software Solibri Model Checker is a ‘design-spell-check tool’ that allows to
check an IFC building model against pre-defined rules. Among the large set of predefined
rules available are also constraints with spatial semantics, such as “Beam must touch slab
surface above”, “All load bearing components must be supported by load bearing
components.”

However, Ding et al. (2006) state that “Solibri Model Checker is restricted in its application
to code compliance checking due to a restricted range of objects and parameters for encoding

3 http://www.iccsafe.org/SMARTcodes/index.html

3

building codes and domain knowledge”. Solibri Inc. provides the integration of user-specific
rules as a consultancy service, as realized, for example, in case of the implementation of the
GSA accessibility framework (Eastman, 2009). However, the extension of the rule base
directly by users is not intended.

In (Kim & Grobler, 2009) an ontology-based approach for representing requirements and
constraints of a project is presented. The authors propose to employ an ontology reason
mechanism to detect conflicts between diverging participants’ requirements in collaborative
design scenarios. Unfortunately, the paper discusses only very basic quantitative constraints,
such as limits on a slab’s thickness.

In (Borrmann, 2004) a declarative constraint definition language for digital building models
with dynamic data models has been presented. However, the presented language allows only
the specification of simple constraints based on attribute values and relations and does not
provide support for spatial constraints.

The necessity for formalizing client requirements has been extensively discussed by
Kiviniemi (2005). He has developed a requirements model specification which can be linked
to a building-product-model-based design model of the project.

3 Spatial constraints
Spatial constraints form an important intermediate level of abstraction, between the
quantitative properties of building geometry (vertex coordinates etc.) as encoded in the
building information model and the way humans reason about building and the relations
between their components (Figure 1).

Figure 1: Spatial constraints form an intermediate layer of abstraction

Many construction codes and regulations make use of spatial constraints, e.g. “There must be
insulation below the ground slab.”, “A heat and smoke vent has to be located directly above
the exit staircase.” etc.

We distinguish three different types of spatial constraints:
• distance constraints
• directional constraints
• topological constraints

Distance constraints rely on the Euclidean metric and specify the maximum or minimum
distance between two building elements. The spatial operators available for defining metric
constraints are distance, closerThan, fartherThan, and maxDist. They have been formally
defined in (Borrmann et al., 2009).

Directional constraints may be used to restrict the directional relationship between two
building elements. As underlying directional predicates we provide above, below, northOf,
southOf, eastOf, westOf. Since in human communication, the assignment of a directional
predicate relies on the assumptions and the context the users have in mind, the semantics of

4

the predicates have been defined within two different directional frameworks, the projection-
based and halfspace-based model (Borrmann & Rank, 2009). The models differ in the way
they form individual space partitions to which to one of the directional predicates is assigned.
Beyond that, there are two different flavours of the directional operators: The strict version
requires the entire target object to be located within the respective space partition, in case of
the relaxed version a part of the target object suffices.

Topological constraints restrict the topological relationship between two building elements,
i.e. those relationships which are invariant under affine transformations, such as translation,
rotation and scaling as well as any combination of them. For the mutual exclusive topological
predicates touch, contain, within, overlap, equal and disjoint formal specifications on the
basis of the 9-intersection model have been given in (Borrmann & Rank, 2008).

4 Consistency and requirement constraints
In general, we distinguish two fundamentally different types of constraints: Consistency
constraints and Requirement constraints. Consistency constraints result from spatial
(geometric or topological) references in the BIM data model. A typical example is the
containment relationship, which is modelled in IFC by the IfcRelContainedInSpatialStructure
objectified relationship. In general, the data model allows setting this relationship also for
elements that are not contained within each other. This may result in inconsistencies between
the geometric and the semantic representation with severe consequences for applications
relying on these spatial relationships. By applying the spatial constraint checking techniques
presented here, these kinds of inconsistencies can be detected and fixed. Other relationships
of the IFC data model with spatial semantics are IfcRelConnectsElements, IfcRelCoversBldg-
Elements, IfcRelCoversSpaces, IfcRelFillsElement, IfcRelVoidsElement and IfcRelSpaceBoun-
dary, for example.

Consistency constraints are generic, i.e. not project-specific. Requirements constraints, on the
other hand, represent building codes, regulations, best-practise construction rules, or client
requirements, which may vary from project to project. A typical example for a requirement
constraint with spatial semantics would be “the kitchen in the second storey must be directly
above the kitchen in the first storey”.

5 Constraint checking in collaborative design process

The proposed concepts are based on the assumption that a central model repository such as an
IFC model server is used for central model maintenance and design coordination. Basically
we distinguish two different modes of maintaining constraints in conjunction with a building
information model. In the first mode, the constraints are stored as part of the building model,
using for example IfcConstraint objects. This allows detecting conflicts during the work on a
local copy of the building model provided that there is constraint checking engine available.
In the second mode, the constraints are stored in a separate rule base which is located at the
central information repository. In this case, constraints are only validated when the building
model is checked-in at the central repository. The third option is a hybrid mode, where
constraints are stored in the BIM but validated only during the check-in procedure.

Whenever a constraint violation occurs, it has to be resolved manually. Either by modifying
the BIM in a way it complies with the defined constraints, or by removing the violated con-
straints. If the violated constraint has been defined by another participant, the design conflict
has to be resolved through classical negotiation techniques supported by communication via
phone or email.

5

A typical example scenario where a constraint with spatial semantics is used in a collaborative
design process would look as follows: First an HVAC engineer places a water line at the top
side of a certain room. Later, the interior architect inserts a suspended ceiling below the water
line and, at the same time, sets the constraint “ceiling below water line”. When even later, the
HVAC engineer again modifies the position of the water line such that it becomes located
below the ceiling, a constraint violation is detected and communicated to the HVAC engineer.

Besides constraint violation, also contradictions between constraints which are defined by
different participants have to be detected. Let’s assume, in an abstract example scenario, three
different participants: The first one sets a constraints that demands “object A above object B”,
the second one “B above C” and the third one “C above A”. As soon as the third constraint is
entered into the rule base, the constraint checking engine has to detect the contradiction and
inform the user accordingly.

Besides requirement constraints defined by the users, also consistency constraints have to be
checked each time a BIM model is checked-in at the central repository. This is equivalent to a
successful compilation of program code which is required in collaborative software develop-
ment projects before a new version can be checked-in at the code repository. In that case, the
compiler acts as a consistency check engine.

6 Constraint representation in IFC
With release 2.0, the Industry Foundation Classes started to provide support for capturing
constraints in digital building models. Currently, in IFC2x3 release, the IfcConstraint-
Resource schema has been integrated, providing the entities IfcConstraint, IfcMetric and
IfcObjective which can be associated with objects deriving from IfcRoot, including IfcControl
(Figure 2).

In the IFC model, constraints may be either qualitative (represented by an IfcObjective) or
quantitative (represented by IfcMetric). A qualifier can be applied to an objective constraint
that determines the purpose for which it is applied (CodeCompliance, DesignIntent, Health-
AndSafety, Requirement, Specification, and TriggerCondition). An IfcObjective is applied to
define the constraining values beyond which building codes may be violated or to limit the
selectable range of values as in a specification (e.g. value of d must be greater than a but less
than b). A set of benchmark values can be specified for the objective constraint and a set of
result values captured for performance comparison purposes. An IfcMetric defines the actual
value or values of a constraint. Values can be defined in terms of a benchmark requirement
which sets the intent of the constraint i.e. whether the benchmark is greater than (>), less than
(<) etc.

The type of constraint may be hard, soft, advisory, or undefined. The entity IfcConstraint-
AggregationRelationship allows for concatenating individual constraints by applying the
logical operators AND or OR resulting in an aggregated IfcConstraint object. IfcConstraint
objects can be associated with any subtype of IfcObjectDefinition (derived from IfcRoot)
through the IfcRelAssociatesConstraint relationship; constraints can thus be applied directly
to objects like building elements, or via controls assigned to objects. The IfcControlExtension
schema provides basic entities (subtypes of IfcControl), that control or constrain products or
processes in general, e.g. space programs or time schedules.

A second mode of defining constraints in IFC is the association of constraints with properties
by means of the IfcPropertyConstraintRelatinship. This allows setting constraints to values
that are defined within property sets. This mode is not discussed in detail here.

6

Figure 2: Class diagram in UML notation of the current entities constituting the IFC constraint
resources and the proposed extension by spatial constraints (depicted in yellow).

Figure 3: Proposed extension of IFC by entities representing spatial constraints

The IfcConstraint model has been employed in the smartCodes project for encoding access
and egress requirements (Nisbet et al., 2009). In a similar context, other researchers preferred
to derive a simplified model from the IFC representation where e.g. a wall’s thickness is
accessible by an explicit attribute. In this case, the constraints have been defined as external
rules acting on the simplified model.

7 Integration of spatial constraints with IFC

For integrating spatial constraints with IFC we propose an extension of the existing frame-
work. Figures 2 and 3 depict the proposed extensions.

We propose IfcSpatialControl (subtype of IfcControl) as abstract supertype for semantic
spatial control objects in the model, with subtypes IfcDirectionalControl, IfcTopological-
Control, and also IfcProximityControl (introduced in IFC2x4 alpha as subtype of IfcControl)
to capture the nature of the control and potentially the actual status of it (distance, direction or
topology); the actual status is optional information and when known can be asserted against
any associated requirements (constraints).

7

The requirements would be associated to spatial control by IfcRelAssociatesConstraint, with
IfcObjective or its proposed new subtypes: IfcDirectionalObjective or IfcTopologicalObjec-
tive (distance objective is represented by IfcObjective, and distance value in IfcMetric).

For defining directional constraints, the entity IfcDirectionalObjective has been introduced. It
provides the attributes DirectionalOperator, DirectionalModel, and ModelStrictness which
allow encoding the required parameters described in Section 3. To restrict possible values of
these attributes the enumerations IfcDirectionalOperatorEnum, IfcDirectionalModelEnum,
IfcDirectionalModelStrictnessEnum have been introduced.

Topological constraints are defined by means of the entity IfcTopologicalObjective, which
allows to choose between six different topological conditions provided by the enumeration
IfcTopologicalOperatorEnum.

The proposed IfcRelAssignsToSpatialControl entity allows associating two IfcProduct or Ifc-
TypeProduct objects (‘relating’ and ‘related’) with IfcSpatialControl. These objects are sub-
sequently interpreted as operator A and B, respectively, according to the definitions of the
directional and topological operators. Figure 4 shows an example object network representing
the constraint “Wall A shall touch Column B“.

Applying the IfcConstraintAggregationRelationship described in Section 6 enables to com-
bine e.g. distance and direction constraints, which helps to describe constraints as e.g. “more
than 1 meter above”.

Figure 4: Instance diagram representing the constraint “Wall A shall touch Column B”

8 Alternative approach: Function-based representation of spatial operators

Integrating spatial constraints in the IFC building model is one possible solution. An
alternative approach is to separate the (spatial) constraints from the building model and
maintain them independently in a constraint management system. In (Kim et al., 2006), this
approach has been implemented for non-spatial constraints using the rule schema func-
tionality of the EDM Model Server. In this case, the integration of spatial constraints can be
realized by providing a callable function for each of the individual spatial operators. These
functions can then be used as building blocks in constraint or rule definitions.

The advantage of this approach is a higher degree of flexibility. For example, spatial operators
can also be used as selectors, e.g. to identify all walls touching a certain slab and then apply
certain constraints on them. One of the disadvantages is that spatial constraints are not part of
the (standardized) building model and are thus not exchanged – a constraint check by the
participant’s application is made impossible. Closely related to this is the loss of system
independency.

8

9 Spatial constraint checking engine
In the proposed concept, the checking of spatial constraints is realized by a spatial constraint
checking engine. The engine requires access to an explicit 3D model of the building including
all its elements. The actual checking is realized by means of geometric-topological algorithms
that have been presented in (Borrmann & Rank 2008), (Borrmann et al. 2009) and (Borrmann
& Rank 2009). Future publications will discuss the implementation in detail.

Conclusion
The paper has presented concepts for enabling spatial constraint checking for building
models. Providing spatial operators as building blocks for constraint specification facilitates
the capturing and formalization of building codes, requirements, and design intents. In the
context of collaborative work, regular constraint checking procedures help to detect conflicts
between competing design decisions in an early stage. As one approach for combining spatial
constraints with building information models, the paper has presented a proposal for
integrating spatial constraint with the IFC model. This will offer the possibility to not only
exchange ‘hard’ data between the participants of a planning team, but also requirements and
design intents.

References
Borrmann, A.; Hauschild, T.; Hübler, R. (2004) Integration of Constraints into Digital Building Models for

Cooperative Planning Processes. Proc. of the 10th Int. Conf. on Computing in Civil and Building
Engineering, 2004

Borrmann, A., Schraufstetter, S. & Rank, E. (2009) Implementing Metric Operators of a Spatial Query Language
for 3D Building Models: Octree and B-Rep Approaches. Journal of Computing in Civil Engineering,, 23 (1),
34-46

Borrmann, A. & Rank, E. (2008) Topological operators in a 3D Spatial Query Language for Building
Information Models. Proc. of the 12th Int. Conf. on Computing in Civil and Building Engineering

Borrmann, A. & Rank, E. (2009) Specification and implementation of directional operators in a 3D spatial query
language for building information models. Advanced Engineering Informatics, 23 (1), 32-44

Eastman, C.; Teicholz, P.; Sacks, R. & Liston, K. (2008): BIM Handbook: A guide to building information
modeling for owners, managers, designers, engineers, and contractors. John Wiley & Sons.

Eastman, C. (2009) Automated assessment of early concept designs. Architectural Design 79 (2), 52-57.
Hyvärinen, J. (2008) Requirements representation as constraints in IFC model. V1.1, Technical Report, VTT,

Finnland.
ISO (2004) ISO 10303-11:2004 Industrial automation systems and integration -- Product data representation and

exchange -- Part 11: Description methods: The EXPRESS language reference manual.
ISO (2005) ISO 10303-14:2005 Industrial automation systems and integration -- Product data representation and

exchange -- Part 14: Description methods: The EXPRESS-X language reference manual.
Kim, H.; Grobler, F. (2009) Design coordination in Building Information Modeling using ontological

consistency checking. Proc. of the ASCE International Workshop on Computing in Civil Engineering.
Kiviniemi, A. (2005) Requirements management interface to building product models. Ph. D. Thesis, Stanford

University, USA. CIFE Technical Report #161.
Liebich, T., Wix, J., Forester, J. and Qi, Z. (2002) Speeding-up the building plan approval – the Singapore e-plan

checking project offers automatic plan checking based on IFC. Proc. of the 4th European Conference on
Process and Product Modeling

Ding, L., Drogemuller, R., Rosenman, M., Marchant, D. and Gero, J. (2006) Automating code checking for
building designs – Designcheck. Proc. of the CRC CI International Conference.

Han, C. S., Kunz, J. Law, K. H. (1997) Making Automated Building Code Checking a Reality, Facility
Management Journal, September/October, 1997, pp. 22-28.

Nisbet, N.; Wix, J. & Conover, D. (2009) The Future of Virtual Construction and Regulation Checking. In
Brandon, P. & Kocatürk, T. (ed.) Virtual Futures for Design, Construction and Procurement, Blackwell
Publishing Ltd, 2008, 241-250

